Week 2, Lecture 2: Transparency

Ana Lucic
University of Amsterdam

January 14, 2020
Overview

1 Motivation
2 Global Surrogate Explanation Models
3 Local Surrogate Explanation Models
 - LIME: Ribeiro et al. (2016)
 - SHAP: Lundberg and Lee (2017)
4 Counterfactual Examples
 - Laugel et al. (2019b)
 - Wachter et al. (2017)
 - Lucic et al. (2019)
5 Integrated Gradients
 - Sundararajan et al. (2017)
6 Additional Explanation Methods
7 Conclusion
Motivation

Figure: Husky or wolf?

Source: Ribeiro et al. (2016)
Motivation

Prediction: Wolf
But can this prediction be trusted?

Figure: Husky or wolf?

Source: Ribeiro et al. (2016)
The explanation shows us that the model is focusing on the (snowy) background, and not on the animal itself.

Source: Ribeiro et al. (2016)
Motivation

Figure: Left: original image, Right: explanation

The explanation shows us that the model is focusing on the (snowy) background, and not on the animal itself.

Correct answer: Husky!

Source: Ribeiro et al. (2016)
How can explanations for ‘black-box’ models be generated? A naive solution:

- Given a ‘black-box’ model f, train an interpretable model g using the predictions of f as the ground-truth for g.
Global Surrogates

How can explanations for ‘black-box’ models be generated? A naive solution:

- Given a ‘black-box’ model f, train an interpretable model g using the predictions of f as the ground-truth for g.

- Obtain an explanation through the interpretable model g (e.g., coefficients of linear model).
How can explanations for ‘black-box’ models be generated? A naive solution:

- Given a ‘black-box’ model f, train an interpretable model g using the predictions of f as the ground-truth for g.

- Obtain an explanation through the interpretable model g (e.g., coefficients of linear model).

- Evaluate g in terms of fidelity: the proportion of predictions from g that match the predictions of f.
Global Surrogates

How can explanations for ‘black-box’ models be generated? A naive solution:

- Given a ‘black-box’ model f, train an interpretable model g using the predictions of f as the ground-truth for g.
- Obtain an explanation through the interpretable model g (e.g., coefficients of linear model).
- Evaluate g in terms of fidelity: the proportion of predictions from g that match the predictions of f.
- However, as fidelity increases, added utility of using f instead of g decreases.
LIME: Local Interpretable Model Explainer

- Explains individual predictions by approximating them locally with a linear model.

- Given a test instance x, training set X, and complex model f, train a simple model g on a subset of X that is close to x.

Source: Ribeiro et al. (2016)
Figure: LIME explanation for the large red plus: fit a linear model mostly based on points near the original point, weighted by how close they are to the original point.

Source: Ribeiro et al. (2016)
LIME explanation for a textual data: a binary classification task predicting whether an email is about Atheism or Christianity.

Text with highlighted words

From: johnchad@triton.unm.edu (jchadwic)
Subject: Another request for Darwin Fish
Organization: University of New Mexico, Albuquerque
Lines: 11

```
NNTP-Posting-Host: triton.unm.edu

Hello Gang,

There have been some notes recently asking where to obtain the DARWIN fish.
This is the same question I have and I have not seen an answer on the net. If anyone has a contact please post on the net or email me.
```

Source:
https://github.com/marcotcr/lime
LIME: Local Interpretable Model Explainer

Figure: LIME explanation for a textual data: a binary classification task predicting whether an email is about Atheism or Christianity.

Explanations can help us make sure our models are right for the right reasons.

Text with highlighted words
From: johnchad@triton.unm.edu (jchadwic)
Subject: Another request for Darwin Fish
Organization: University of New Mexico, Albuquerque
Lines: 11
NNTP-Posting-Host: triton.unm.edu

Hello Gang,

There have been some notes recently asking where to obtain the DARWIN fish.
This is the same question I have and I have not seen an answer on the net. If anyone has a contact please post on the net or email me.

Source: https://github.com/marcotcr/lime
Figure: LIME explanation for an image classification prediction. Top three predicted classes are “Electric guitar”, “Acoustic guitar”, and “Labrador”.

Source: Ribeiro et al. (2016)
How does LIME fit into the taxonomy by Guidotti et al. (2018b)?

- Problem type:
How does LIME fit into the taxonomy by Guidotti et al. (2018b)?

- **Problem type**: Outcome (local) explanations
- **Explanator:**
How does LIME fit into the taxonomy by Guidotti et al. (2018b)?

- **Problem type:** Outcome (local) explanations
- **Explanator:** Feature importances
- **Model type:**
How does LIME fit into the taxonomy by Guidotti et al. (2018b)?

- **Problem type:** Outcome (local) explanations
- **Explanator:** Feature importances
- **Model type:** Model-agnostic
- **Data type:**
How does LIME fit into the taxonomy by Guidotti et al. (2018b)?

- **Problem type:** Outcome (local) explanations
- **Explanator:** Feature importances
- **Model type:** Model-agnostic
- **Data type:** Text, Image, Tabular
SHAP: Shapley Additive Values

- SHAP is another explanation method that generates feature importances for individual predictions.

- Can be aggregated to produce global explanations for an entire dataset.

- Strong theoretical guarantees (see Section 3 of Lundberg and Lee (2017)).

- Widely regarded as the current SOTA for feature importance explanation methods.
SHAP: Shapley Additive Values

SHAP is inspired by work in game theory about attributing surplus in a cooperative game:

Figure: Total surplus when all three players cooperate.

Source: Lo (2014)
SHAP: Shapley Additive Values

SHAP is inspired by work in game theory about attributing surplus in a cooperative game:

Figure: Total surplus when all three players cooperate.

Figure: Surplus for each possible subset of players

Note that players' contributions to the total surplus are not independent of one another!

Source: Lo (2014)
Shapley values tell us how much of the total surplus each player is responsible for.

Lipovetsky and Conklin (2001) applied this idea to regression outputs: how much does each feature contribute to the overall prediction?

Lundberg and Lee (2017) propose efficient ways to approximate Shapley values specifically for linear models, deep models and tree-based models.
SHAP: Shapley Additive Values

SHAP provides both coarse and granular feature importance visualizations:

Figure: Left: Summary plot of SHAP values, Right: Density plot of SHAP values.

Source: https://github.com/slundberg/shap
Counterfactual Examples

- Explanations should be actionable – given an explanation, a user should be able to understand what they need to change in order to change the outcome.

- Counterfactual explanations are based on finding counterfactual examples that are close to the original example but have a different prediction.
Given a model f and an instance x, find x' such that $f(x) \neq f(x')$ and $d(x, x')$ is minimal, where d is some distance function.

Definition 1: Counterfactual example

The minimal perturbation required to change the predicted class of a given observation (i.e., given $x \in X$, the counterfactual example is x').

Definition 2: Counterfactual explanation

The difference between x and x'.
Counterfactual Explanations

Ideally, a counterfactual example x' should satisfy the following properties (Laugel et al., 2019b):

- **Proximity:** x' should be close to actual training examples that are in the same class.

- **Connectedness:** x' should not live in a part of the decision space where there do not exist training examples.

- **Stability:** two instances x_1 and x_2 are similar $\implies x_1'$ and x_2' are similar.
Counterfactual Explanations

Figure: Decision boundaries for Iris dataset. Yellow dot is the original x. Green and orange are counterfactual examples.

Source: Laugel et al. (2019a)
Counterfactual Explanations

Figure: Decision boundaries for Iris dataset. Yellow dot is the original x. Green x' is not a good counterfactual example since it does not satisfy the connectedness property. Orange x' satisfies proximity and connectedness.

Source: Laugel et al. (2019a)
Wachter et al. (2017) propose generating counterfactual examples by minimizing a loss function of the form:

$$\mathcal{L}_{total}(f, x, x') = \mathcal{L}_{prediction}(f, x, x') + \mathcal{L}_{distance}(x, x')$$

where:

- $\mathcal{L}_{prediction} = \text{any differentiable prediction loss function (e.g. hinge loss, mean squared error)}$
- $\mathcal{L}_{distance} = \text{any differentiable distance function (e.g. Euclidean distance, Cosine distance)}$
Counterfactual Examples

Different distance functions can produce different counterfactual examples (Lucic et al., 2019).

Figure: Euclidean, Cosine and Manhattan counterfactual explanations for the same input instance. Red \rightarrow decrease feature value, green \rightarrow increase feature value.

Source: Lucic et al. (2019)
Given an image, determine the pixels that contributed to the prediction:

Figure: Image predicted as “fireboat”
Integrated Gradients

Interpolate a series of images between a baseline (all black) image and the original image, varying in intensity.

Source: https://github.com/ankurtaly/Integrated-Gradients
Interpolate a series of images between a baseline (all black) image and the original image, varying in intensity.

Plot the softmax score for the predicted category vs. the intensity.
Integrated Gradients

Take the gradient of the final output w.r.t. the interpolated images:

Figure: Scaled images: from baseline to original

Figure: Scaled gradients of output w.r.t. images

Source: https://github.com/ankurtaly/Integrated-Gradients
Integrated Gradients

Some more examples of Integrated Gradients explanations:

Source: Sundararajan et al. (2017)
Additional Explanation Methods

- **Prototypes:** Li et al. (2018)

- **Influential training points:** Koh and Liang (2017), Sharchilev et al. (2018)

- **Decision sets/rules:** Lakkaraju et al. (2019), Guidotti et al. (2018a)

- **Concepts:** Ghorbani et al. (2019)

- **Available Toolboxes:** Nori et al. (2019), Arya et al. (2019)
Complex models should only be used for complex problems; complex models are unnecessary if a simple (and interpretable) model can solve the task at hand.

Most existing methods for interpreting complex models involve interpreting individual predictions.

There exist many, many more methods than those discussed here today, and there does not exist a single one-fits-all solution to transparency in AI \(\iff\) lots of room to contribute!
If you need access to GPUs for your project, please fill in this form below by 12:00 today: https://forms.gle/xiWaBzdsYSTWZgMb6

Lo, R. (2014). Group project - how much did i contribute?

