
 

 

Abstract 

The landscape of Explainable AI (XAI) tools, which 
are practical implementations of XAI algorithms, 
has substantially grown in recent years. However, 
information about the XAI tools is spread across 
several academic and non-academic outlets, making 
it difficult and time-consuming to adopt an XAI tool 
from the vast array of options. We introduce the 
"XAI Toolsheet," a documentation framework with 
22 tool features based on a qualitative analysis of 
152 XAI tools as an effective means to assess XAI 
tools. The proposed tool features are classified 
under three categories: metadata, utility, and 
usability to assess the functionality and usefulness 
of various XAI tools. XAI Toolsheet can aid (a) XAI 
tool developers to evaluate their tools along 
proposed dimensions critically and (b) XAI tool 
users to quickly compare the capabilities and 
limitations of XAI tools and aid in their decision-
making process. Our goal is for the XAI Toolsheet 
to become a standard documentation practice for the 
ML community. We practically demonstrate the 
usefulness of our framework by presenting 
instantiations of the XAI Toolsheet for two different 
XAI tools.   

1 Introduction 

There is a growing demand for Machine learning (ML) 
models to be explainable due to several instances of harm 
caused by ML systems in real-world applications [Arya et al., 
2019]. There is a lack of consensus around the definition of 
explainability, but a common theme from XAI studies 
considers explainability to encompass any technical means to 
make AI understandable by humans [McGregor, 2020]. The 
most notable contributions to making ML model behavior 
interpretable and understandable to humans come from the 
subfield of Explainable AI (XAI) [Hall et al., 2019], where 
the focus of existing research is around creating new 
explainability algorithms [Kaur et al., 2020]. In AI, an 
algorithm refers to "a set of step-by-step instructions...the 
algorithm tells the machine how to find answers to a question 
or solutions to a problem" [Kingman et al., 2022]. But, in the 
recent years, there has been a wave of new XAI algorithmic 

tools that implement the XAI algorithms and methods 
developed by XAI researchers. An algorithmic tool is defined 
as "a product, application, or device that supports or solves a 
specific problem, using complex algorithms" [Kingman et al., 
2022]. Similarly, XAI algorithmic tools aim to support the 
explainability of ML systems. Every XAI algorithmic tool 
has an underlying XAI algorithm, but every XAI algorithm is 
not necessarily an XAI tool by it-self. For the remainder of 
the paper, we will refer to XAI algorithmic tools as "XAI 
tools".    

XAI tools provide capabilities that enable the transition of 
explainability from theory to practice. However, the 
information about XAI tools spans across multiple academic 
and non-academic outlets. A preliminary search yielded 152 
XAI tools; choosing from such a wide range of toolsets can 
be difficult and time-consuming for the intended tool users. 
Further, the choice of XAI tools will largely depend on the 
application domain and user preferences [Morley et al., 
2021]. Thus, selecting an XAI tool can be seen as a classic 
case of the psychological phenomenon "choice overload": a 
situation where many equivalent or similar choices lead to 
dissatisfaction with or avoidance [Iyengar and Lepper, 2000]. 
Since no single tool offers a one-size-fits-all solution [Arya 
et al., 2019; Richard et al., 2018], there is a need for a 
practical framework that will offer guidance for optimal tool 
selection. Also, recently several government agencies 
worldwide are enacting policies to document information 
about the algorithmic tools they use [Floridi, 2020; Kingman 
et al., 2022]. Such efforts are directed toward increasing the 
transparency and accountability of algorithm-assisted 
decisions. However, there is no consensus about the tool 
information that needs to be documented. Hence, we address 
the following research question (RQ): 
• RQ: What are the relevant tool features that needs to be 

documented to assess the functionality and use-fulness of 
different XAI tools effectively?  

Our aim is to facilitate the discussion regarding the de-
sired tool properties by introducing “XAI Toolsheet” 
framework consisting of 22 tool features to evaluate different 
XAI tools. The rest of the paper is organized as follows: we 
begin with an overview of related work that has inspired our 
paper, then we explain 22 identified tool features, which we 
will refer to as XAI Toolsheet dimensions. Afterwards, we 
show the practical use of XAI Toolsheet by comparing two 
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XAI tools and conclude with discussing the future scope of 
research. From here on, we will use terms “tools'' and "XAI 
tools'' interchangeably to enhance readability of the paper. 

2 Related Work 

Most of the existing work is around describing the advantages 
and disadvantages of XAI algorithms or techniques [Erickson 
et al., 2017; Morley et al., 202]. Only few studies inform 
about the XAI tools. For instance, Hohman et al. [2018] 
surveyed the state of deep learning research visualization 
techniques and summarized some of the open-source deep 
learning tools. There is a lack of comprehensive research on 
the tool properties that would assist a practitioner in choosing 
one for their desired task. We aim to fill this gap by 
introducing the XAI Toolsheet, which contains a set of tool 
criteria to guide interested users in their tool selection 
process.   

The framework most similar to ours is that of Sokol and 
Flach [2020], they propose a list of characteristics to evaluate 
XAI algorithms in a self-reporting format called 
"Explainability Factsheets". It differs from XAI Toolsheet 
since we focus on detailing the components of 
implementation tools, not on assessing the quality of 
explanations provided by the XAI algorithms. 

2.1 AI Documentation Efforts 

Our inspiration to create XAI Toolsheet as a documentation 
template stems from the existing documentation efforts that 
advocates for standardizing and sharing information about 
datasets and models used in the development of AI solutions. 
Some prominent data documentation efforts to capture the 
potential bias and intended uses includes Gebru et al.’s 
[2021] Datasheets for datasets, which proposes a 
standardized template for public datasets, Bender and 
Friedman’s [2018] Data Statement schema for datasets used 
in natural language processing (NLP), and Holland et al.’s 
[2018] Data Nutrition label that provides a standardized view 
of the core components of a dataset. Other documentation 
tools focus on the model, such as the Model Card proposed 
by Mitchell et al. [2019] which conveys information about 
the intended use and context of the ML model. Our proposal 
is distinguished from prior work in that we focus on tool-
specific criteria as opposed to properties specific to datasets 
or ML models. 

3 Methodology 

We address our research question (RQ) by applying 
qualitative document analysis method on 152 tools that were 
made public between 2015 and 2021 to come up with themes 
and subthemes. The relevant documents include research 
papers from academic databases [ScienceDirect, IEEE 
Xplore, SpringerLink, ACM Digital Library, Google Scholar, 
arXiv, Scopus]. Although most of tools included for the study 
have a corresponding research paper, some are only 
accompanied by a GitHub Readme file or a blog post. (See 
Appendix A for the tools cited in this paper and Appendix B 
for instructions on how to obtain the complete tool list and 

survey/review method that are used to create the framework). 
We include these outlets because of the rapid growth of XAI 
tools and the lack of a perfect fit for publishing and 
disseminating work in this area, therefore, the inclusion of 
these non-traditional sources is important to review, as they 
are highly influential and impactful to the field. We identified 
22 tool features categorized under 3 dimensions: metadata 
(Section 4), utility (Section 5), and usability (Section 6).  We 
describe each features functionality and the corresponding 
rationale for its inclusion in the framework and summarize 
any problems, suggestions, and opportunities for future 
research.  

4 Metadata 

This category is based on the concept of metadata from in-
formation systems and is most commonly defined as "data 
about data" [Riley, 2017]. Metadata is a short explanation or 
summary of basic information about an artifact. In the context 
of our study, we propose 8 dimensions under metadata to 
summarize basic information about the tool that will make it 
easier for the users to find and use the tool.  

4.1 Tool Type 

This refers to the deployment format of the tool that offers 
explanation capabilities. Since each tool type requires 
varying degrees of technical expertise, as well as varying 
integration and interoperability requirements, this 
information will allow the tool users to assess the technical 
capabilities and needs before integrating the tool into their 
project. Based on our analysis, we classify types of tools into 
the following categories:   
• Packages or Libraries: programming language-specific 

tools (e.g., Python, R, Java, C++) that provide 
explainability capabilities for an ML project. Some of 
the packages (e.g., Manifold) offer visualizations as web 
applications, while others are in the form of visualization 
libraries (ELI 5) 

• Platforms: software products that offer explainability as 
a feature in the product. Platforms are used to complete 
ML projects from beginning to end and typically support 
the project through the stages of data analysis, data 
preparation, modeling and evaluation, and deployment.  

• Visual analytics systems: graphical user interfaces in 
the form of dashboards, which often include point and 
click features that help the user understand the model’s 
behavior (e.g., Google What-if tool).   

We observe XAI tools are developed primarily to help 
model developers or AI researchers to inspect and debug the 
model which is in-line with existing research, and it may be 
challenging for non-technical stakeholders to use these tools 
directly. It is worth mentioning that the majority of XAI tools 
focus on ML model explanations and only a few (e.g., H20 
Driverless AI, Shapash, AI explainability 360) provide 
explanations of the data as well as models.   

We also observe that tool developers use multiple naming 
conventions for their tools, the most used terms include: 
“toolkits”, “platforms”, “library”, “packages”, “framework” 
and “visual analytics systems”. Tool developers typically do 



 

 

not offer an explanation as to why they use a particular 
naming convention and some use multiple terms for the same 
tool type. We suggest that the XAI tool community adopts a 
consistent naming convention (i.e., the one suggested in this 
subsection) in order to minimize confusion for both technical 
and non-technical stakeholders. 

4.2 Type of Tool Developers 

This dimension contains information about the identity of the 
tool creators. This information may help tool users to assess 
the credibility of tools since each creator might have varying 
levels of AI experience, knowledge, and technical 
capabilities. We broadly group tool developers into three 
types:  
• Companies: large corporations which have a division 

dedicated to AI (e.g., Microsoft, Google, IBM, Uber, 
Amazon, Oracle, Facebook), AI-specific companies 
(e.g., Data robot, H20, Databricks, Alteryx])   

• Individual contributors: such as academic researchers 
(mostly computer science PhD students), industry 
employees (large corporations, startups, research labs).   

• Universities: academic institutions that focus on 
research (e.g., University of Washington, Stanford).   

4.3 Tool Users 

This dimension gives information about the intended users of 
the tool. The explainability needs of tool users can vary 
significantly depending on their goals, back-grounds, usage 
contexts, and other factors [Arya et al., 2019]. For example, 
technical stakeholders may want to dive deeper into the 
performance of a system and determine whether it works as 
intended. In contrast, business-oriented users may require the 
tools to offer non-technical information along with some 
summary statistics. We categorize the intended tools users as,   
• Technical Users: such as data scientists, ML engineers, 

ML researchers, etc. These stakeholders often use 
explanations to debug or uncover issues with the model 
and explain the model to other stakeholders. 

• Non-technical Users: include (a) business users, (b) 
impacted groups, and (c) regulatory bodies. Business 
users typically use explanations to make informed 
decisions about AI decision support systems (e.g., 
medical doctors, loan officers, judges, or hiring 
managers). Usually, these users are not experts regarding 
the technical details about the functioning of the AI 
systems they use. Impacted groups are individuals whose 
lives could be impacted by the AI. They typically use 
explanations to seek recourse or contest the AI. Possible 
examples include patients, job or loan applicants. 
Regulatory bodies are institutions who audit for legal or 
ethical concerns such as fairness, safety, or privacy.   

The majority of tools were developed primarily to help 
technical stakeholders to inspect the model. We recommend 
that more research is needed to understand if and how each 
stakeholder benefits from the explanations offered by the 
tools. 

4.4 Tool Developed Year 

This provides information about the tool created year. 
Recency can play a role in the adoption of new technology, 
since some users tend to associate recency with state-of-the-
art capabilities and adopt new tools right away, while others 
may wait until the tool gains traction before adopting it. We 
anticipate tha the tool created year to be a useful filter during 
tool selection process.  

4.5 Type of Tool Access 

This dimension provides the cost and support information 
associated with the tool. The two major types of access are,   
• Open source: is free to use and offers open 

collaboration. It is free for anyone to download and use. 
There are often various types of support offered, such as 
de-tailed documentation, forums, wikis, newsgroups, 
email lists and slack channels.   

• Proprietary: is copyrighted with no open access and 
limited flexibility. Proprietary tools are typically not free 
to use.   

We find GitHub to be the main destination where open-
source tools are published. We find that the majority of XAI 
tools are developed as open-source and are managed by a 
distributed community of developers who cooperatively 
improve and support the source code, often without 
remuneration. We also observe that some tools are initially 
built as proprietary solutions but are later released as open 
source (e.g., Manifold. Similarly, there are distributors of 
open-source packages who also offer a for-profit, licensed 
and proprietary version built upon the original opensource 
platform (e.g., H20 driverless AI). 

4.6 Tool License 

Tool license is a way for users to gain access to tools while 
ownership rights remain with the tool developer. Each 
opensource tool has an associated open-source license, which 
is a legal and binding contract between the developer and the 
user of a tool, declaring that the tool can be used in 
commercial applications under specified conditions. The 
most common licenses used are as follows:  
• MIT: is by the Massachusetts Institute of Technology. It 

allows for free use, modification, and distribution of the 
tool as long as a copy of the original MIT license and 
copyright notice is added to it.   

• Apache: is by the Apache Software Foundation (ASF). 
It allows for free use, modification, and distribution of 
the tool as long as the user follows the terms of the 
Apache License. Most patents are licensed under the 
Apache license.   

• Berkeley Software Distribution (BSD): has a family of 
permissive free software licenses that lets the user freely 
modify and distribute the tool as the user retains a copy 
of the copyright notice, list of conditions, and the 
disclaimer.  

The important difference to note is that the Apache license 
mandates that changes made to the source code may be 
documented, which is not the case with the MIT or BSD 



 

 

licenses. Further study is needed to understand the impact of 
license types in the tool selection process.   
 

4.7 Tool Documentation 

This feature refers to documentation detailing the installation 
and configuration requirements. This includes documentation 
about the code, APIs, release notes, and design specifications 
to ensure tool compatibility for the use case at hand. Tool 
documentation aids users in discovering gaps between their 
requirements and the tools’ capabilities. Most documentation 
of open-source tools is published using an open-source 
software documentation hosting platform called “Read the 
Docs”. It generates documentation written with the Sphinx 
documentation generator. The Sphinx theme is meant to 
provide a better reader experience for documentation users 
on both desktop and mobile devices. Whenever there is an 
update pushed in a GitHub repository, “Read the Docs” will 
automatically synchronize the code and documentation. 

4.8 Tool Compatibility 

Compatibility refers to the extent to which an XAI tool can 
integrate with ML models developed in various 
environments. This dimension can help users assess their tool 
integration requirements and capabilities, since incompatible 
integration could cause significant inconvenience or non-
usage of the tool, despite its functionality. The most common 
forms of tool integration are with models developed in:  
• ML platform environments that offer end-to-end 

functionalities, including both data and model 
exploration and validation [e.g., Manifold].  

• Modular libraries such as PyTorch [Paszke et al., 2019] 
• Notebook environments such as Jupyter, Colab [e.g., 

What-If Tool]  
• Cloud-based environments such as AZURE, Google 

cloud [e.g., Language Interpretability Tool].  
We also observe that certain tools are compatible with 

specific library versions.  

5 Utility Dimensions 

We adopt the UX (User Experience) design concept of utility, 
defined as providing functionalities that users need to 
successfully perform a task in hand [Ann, 2019]. Similarly, 
the main function of XAI tool is to successfully integrate XAI 
methods to tool users’ projects. We propose the following 8 
features as utility dimensions of XAI tools. 

5.1 Type of Dataset 

At a high level, there are two broad categories of data: 
structured and unstructured.  Structured data typically comes 
in a tabular format where each row corresponds to a data 
point and each column corresponds to a feature. In contrast, 
the format of unstructured data is less explicit and comes in 
forms such as text, audio, images, or videos. Our survey 
indicates that tabular, text, and image/video data are the most 
common types of data types supported by current XAI tools. 
We find that tool developers do not always explicitly state 

which types of data are supported by their tools, and we 
suggest that tool developers provide this information upfront 
for their users.   

5.2 Time of Explanation 

Time of explanation refers to the stages where explanation 
algorithms are applied in an ML lifecycle. We define the time 
of explanation according to three stages: pre-model, in-model 
and post-model (i.e., post-hoc) explanations.   
• Pre-model: Data is one of the most important factors 

that decides the performance of an AI system, and 
therefore it is important to have a good understanding of 
the data before focusing on the model. We observe that 
many tool developers place emphasis on representing 
explanation information in the form of visualization. 
There are tools available specifically for data 
explanations (e.g., Facets) and tools wherein data 
explanations algorithms are bundled with model 
explanations (AIX 360).    

• In-model: referred as intrinsic, or white-box 
explanations are obtained by extracting information 
directly from ML models that are inherently more 
interpretable (e.g. shallow decision-trees, linear 
regressions, etc.).   

• Post-model: are often referred to as black-box or post 
hoc explanations, which are obtained by using an XAI 
algorithm on top of the original model, which is treated 
as a black-box.   

5.3 Scope of Explanation 

This criterion distinguishes whether the XAI algorithm offers 
explanations for individual predictions (i.e., local) or the 
entire model behavior (i.e., global). Global model 
explanations provide insight into the distribution of the 
prediction outputs based on the input features in order to form 
an overall description of the ML model. Local model 
explanations provide insight into the relationship between the 
input features and the prediction for a particular instance. 
This can be done by approximating a small region of interest 
in a black box model using a simpler interpretable model 
[Arya et al., 2019]. We observe that the scope of explanations 
is not explicitly mentioned in many tools, and it is up to users 
to find this information from reading resources provided such 
as research papers or tool documentation. We suggest tool 
developers make this information more explicit upfront.   

5.4 Dependance on Model Class 

This property distinguishes whether algorithms used to pro-
vide explanations are dependent on the specific ML model 
(model-specific) or independent of the ML model (model-
agnostic). Model-specific interpretation algorithms are 
limited to specific model classes because each algorithm is 
based on a specific model’s internals. On the other hand, 
model-agnostic algorithms can be applied to any ML model. 
By definition, model-agnostic algorithms cannot have access 
to the model inner workings, such as weights or structural 
information [Kaur et al., 2020], otherwise it would not be 
possible to decouple them from the black-box model. An 



 

 

advantage of these algorithms is that they allow the user to 
use whichever model they wish, since they are applied after 
training. Unlike model-specific algorithms, they do not 
restrict the user to one model. However, since model-agnostic 
algorithms do not have access to the inner workings of the 
model, it is unclear if they are truly explaining the model.  

The dependence on model class is related to another utility 
dimension: the time of explanation (see Section 5.2). By 
definition, all tools that are model agnostic are also post-
model since they are based on treating the model as a black 
box. However, a model-specific tool can be either in-model 
or post-model. 

5.5 Type of ML Model 

ML models use large amounts of data to infer the parameters 
of a particular problem directly from the data. There are 
various types of ML models, including deep learning models 
(i.e., neural networks), tree-based models, and linear models, 
among others.  

5.6 Type of Explanation Algorithm 

This feature provides information about the XAI algorithms 
provided by the tool. All the open-source tools we surveyed 
offer descriptions of the explanation algorithm along with a 
corresponding research paper to help justify the design 
choices of the algorithm. In proprietary tools, information 
about the explanation algorithms is not available. Some tools 
offer XAI algorithms developed by others (for e.g., LIME 
and SHAP algorithms are available in AIX 360. It is unclear 
as to what improvements that newer XAI algorithms have 
over older ones. We suggest the tool developers to provide 
strong reasoning and contextual evidence when they create 
new algorithms and further research is needed to benchmark 
the performance of XAI algorithms and tools. 

5.7 Type of ML Task 

These includes types of tasks performed by ML algorithms 
such as (semi) supervised learning, unsupervised learning, 
reinforcement learning.    
• Supervised learning: requires datasets that have a 

corresponding label for every single datapoint. For a new 
datapoint, the model is trained to predict the label based 
on what it learned from the labelled dataset.   

• Unsupervised learning: is used for unlabeled datasets, 
where the task is to infer patterns about the data with-out 
reference to any labels.   

• Semi-supervised learning: is used when the dataset has 
a combination of labelled and unlabeled data.  

• Reinforcement learning: is conducted in an interactive 
environment, where an agent learns about its 
environment by using feedback (i.e., rewards) from its 
previous action and states. 

5.8 Problem Type 

This category offers information about the problem types 
supported by the XAI tools. Below we list some examples of 
problem types of supervised and unsupervised learning 
algorithms:   

• Classification (supervised): the output of the model is a 
categorical value.   

• Regression (supervised): the output of the model is a 
continuous value.  

• Clustering (unsupervised): grouping data based on 
their similarities.   

• Dimensionality reduction (unsupervised): maps the 
input into a latent space, which is typically of a lower 
dimension than the original space, while preserving the 
original properties of the data.   

• Generative modeling (unsupervised): generates new 
data points based on patterns found in the dataset. 

6 Usability Dimension 

Usability includes capabilities that enables users to under-
stand and operate the tool easily. It includes the following 6 
features.   

6.1 Explanation Type 

It includes the formats in which the explanations are available 
to the users. We classify the explanation outputs into 
technical and non-technical explanations.   
• Technical explanations: includes summary statistics 

(e.g., coefficients of a linear model) & visualizations that 
comprises of various plots that can help the user 
comprehend predictions (e.g., partial dependence plots).   

• Non-technical explanations: includes non-statistical 
descriptions, either in natural language (e.g., What-If 
Tool) or highlighting important regions in an image 
(Activis). Tools that offer non-technical explanations 
tend to claim that non-ML experts would be able to 
understand the explanations offered. 

6.2 Explainability Enhancing Features 

This refers to any additional tool attributes that make 
explanations more human interpretable. For example, H20 
wireless AI offers “reason codes,” which are natural language 
explanations of Shapley values. The FICO decision 
management suite provides “reason codes,” a textual output 
that helps business users understand a specific decision 
instance, such as the reason for loan rejection.   

6.3 User Specific Explanations  

Checks whether the tool offers ability to customize 
explanations based on the ML stakeholders’ profile. Our 
survey finds that very few tools (e.g., AI Explainability 360) 
offer explanations tailored to various user profiles.  

6.4 Explanation Documentation 

This dimension checks whether tool offers capabilities to 
automatically provide documentation of the explanations, 
since documenting and sharing the explanations in an 
understandable form can improve model governance and 
stakeholders' trust in the predictive ML model. We find that 
some tools automate the documentation of prediction 
explanations to save time for tool users (e.g., Shapash). For 
e.g., Econ ML automatically generate documents with 



 

 

prediction explanations. Some tools [Fiddler platform, 
Contextual AI] allow the reports to be shared in multiple 
formats (e.g., PDF, HTML, e-mail). However, further 
research is needed to identify what information should be 
provided and how it should be displayed to various tool users.   

6.5 Usecase 

The use case feature refers to a concrete example explaining 
how the user should use the tool to complete the task at hand. 
Providing use cases can add clarity because they can help 
explain how the tool behaves in a particular domain. They 
can also help users understand the scope of the tool. Some 
open-source tools [LIME, SHAP] provide notebooks to 
demonstrate the applicability of the tools in various domains 
(e.g., HR, biomedicine, finance, etc.). We also see instances 
where tools developed for one specific domain suggest the 
appropriateness of tools in other fields [Manifold]. However, 
most tools do not contain information about the application 
domain; it is often left to the user to assess the relevance and 
usefulness of the tools for their project. We suggest the tool 
developers include concrete use cases in their tool 
documentation, or at least explain why a particular tool can 
or cannot be used for a given domain. 

6.6 Guidance for Use 

This includes guidelines that would help users determine 
which algorithms are appropriate for their use case. For e.g., 
AIX360 provides a decision tree charts to help users choose 
an XAI method from the list. We encourage tool developers 
to provide such additional guidance to ease the decision-
making process.   

7 XAI Toolsheet Template 

Tool users may find it difficult to read all the available tool 
information. Design fit concepts in HCI suggest presenting 
the information in tabular format when information 
acquisition is concentrated on extracting discrete and precise 
information [Kelley et al., 2009]. As a result, we propose 
displaying the tool information in a form of one-page 
summary template. Appendix C shows the instantiation of 
XAI Toolsheet. 

8 Conclusion 

In this preliminary work, we ideate the concept of XAI tool 
documentation framework which is composed of 22 tool 
features. XAI Toolsheet can be useful to researchers, 
engineers, product managers, and regulators, who are 
interested to know what properties to look for in an XAI tool. 
Although more tool criteria can always be added to the list, 
we suggest the tool developer community include XAI 
Toolsheet as a documentation template to promote the trust 
of ML systems. XAI Toolsheet can further help tool 
developers to critically evaluate their tools for redundancy 
and to highlight unique value proposition of their tools. 

For future work, we plan to validate the tool features and 
the template with tool developers and tool users to deter-mine 
how useful they find XAI Toolsheet in practice. We also want 

to publish a database of XAI Toolsheet for the 152 XAI tools. 
Another future direction involves creating Toolsheet for 
other types of tools focusing on responsible AI practices such 
as fairness, privacy and security.   

A XAI Tools Cited in this Paper 

B Database search & Analysis Details 

Readers who are interested to get the full list of 152 tools, 
database search results, key words, Document analysis 
method that was used to create the framework can reach out 
to surya@partnershiponai.org.  

C XAI Toolsheet Instantiation 

We demonstrate the practical application of XAI Toolsheet 

as shown in Figure 1. This is a prototype template, and it is 

still in its ideation stage, we are currently in the process of 

evaluating and consolidating both the tool features contents 

and the template with XAI tool developers and users.  
 

Tools Retrieved from 

ELI5 https://github.com/eli5-org/eli5 

What-if tool https://github.com/PAIR-code/what-iftool  

H20-

Driverless-

AI 

https://github.com/Ozgeersoyleyen/H20-

Driverless-AI 

Shapash https://github.com/MAIF/shapash 

Data Robot  https://www.datarobot.com/platform/ 

Skater https://oracle.github.io/Skater/ 

Databricks https://databricks.com 

Alteryx https://www.alteryx.com 

Lucid https://github.com/tensorflow/lucid 

Facets https://github.com/PAIR-code/facets 

LIME https://github.com/marcotcr/lime 

SHAP https://github.com/slundberg/shap 

AIX360 https://aix360.mybluemix.net 

EconML https://github.com/microsoft/EconML 

Manifold https://github.com/uber/manifold 

 

Table 1: XAI Tools Cited in this Paper 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Practical application of XAI Toolsheet 
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